
TwoWalk-through Cases: Bond Yields and Disaster Cost
Hyeok Kim

Northwestern University
Evanston, IL, U.S.A.

hyeok@northwestern.edu

Ryan A. Rossi
Adobe Research

San Jose, CA, U.S.A.
rrossi@adobe.com

Fan Du
Adobe Research

San Jose, CA, U.S.A.
fdu@adobe.com

Eunyee Koh
Adobe Research

San Jose, CA, U.S.A.
eunyee@adobe.com

Shunan Guo
Adobe Research

San Jose, CA, U.S.A.
sguo@adobe.com

Jessica Hullman
Northwestern University

Evanston, IL, U.S.A.
jhullman@northwestern.edu

Jane Hoffswell
Adobe Research
Seattle, WA, U.S.A.
jhoffs@adobe.com

ABSTRACT
This document includes two in-depth walk-through cases of our
examples: Disaster Cost (from mobile to desktop) and Aid Budget
(from desktop to mobile) as a part of the Supplementary Material
to a CHI 2022 paper, “Cicero: A Declarative Grammar for Respon-
sive Visualization.”

1 DISASTER COST (MOBILE TO DESKTOP)
The Disaster Cost chart depicts the losses associated with major
natural disasters in the U.S. In Figure 1, the x position encodes the
year, while bar height represents the loss in USD. Bars for five dis-
asters are red and have labels (their names) in the mobile version.
There is a title element (two lines) above the visualization. In addi-
tion to resizing, changes for the desktop view involve (1) internaliz-
ing the title, (2) using a longer form of disaster names (‘Hurricane’
is added) with the loss amount in USD, (3) adding y axis labels for
50, 150, and 250 billion, (4) lengthening the x axis labels (e.g., ‘80
to 1980). The Cicero spec is shown in Figure 1.

The resizing transformation in line 2–4 expresses modifying the
size of the view (reusing the previous rule but changing the size
value). After resizing, there is a large empty space on the left side
of the chart. One way to utilize that space is to internalize the ex-
isting title element into the chart, which can be done using the rule
in line 5–10. In this case, one can use the replace action instead
of reposition to express converting the title element to an in-
ternal non-data annotation. To indicate the new role, the option
has the to keyword (line 8–9). The internal keyword in line 9
expresses that the converted annotation should appear inside of
the visualization. However, this rule provides no designated posi-
tion for the internalized annotation, so our Cicero compiler relies
on the default behavior of the rendering grammar (our extended
Vega-Lite) for choosing the center of the largest empty area (P6).
The separate keyword set to false in line 10 means that the two
title lines move together as a single annotation to prevent the auto-
mated positioning from separating them. This transformation can
be done using the reposition action and internal keyword in
the option as well. One may specify the absolute position of the
internalized annotation using the x and y keywords.

The increased space can also add more axis labels and make la-
bels longer to enhance the clarity of reference elements. The addi-
tion rule in line 11–14 adds the values of 50, 150, and 250 (in the

https://nyti.ms/38VBIzz

option at line 13–14) to the vertical axis (vAxis), resulting in new
axis labels and grid lines for the corresponding values (P3). The
modification rule in line 6–10 lengthens the text format (expression)
of the axis labels for the year field (the specifier in line 15–17).
The null value for the expression keyword in line 19 means ‘no
particular format,’ showing the original four digits for the years.

In addition to the larger screen space, desktop screens allow
for utilizing the horizontal offsets of visualizations (e.g., the visu-
alization margins). Therefore, the modification rule in line 20–28
changes the position and text format of mark labels. In the option,
line 23–25 modify the mark labels to be 10 pixels away from the
corresponding marks horizontally (dx) using the top-right posi-
tion of each mark and the start of each label as reference points
(orient and anchor, respectively). Line 26 sets the text alignment
as left as the labels are moved to the right of the marks. As it be-
comes easier to distinguish the relationship of eachmark-label pair
due to proximity and the added spacing between labels, line 27 indi-
cates that no label ticks are needed for the desktop view (as a short-
cut for {specifier: "mark.label.tick", action: "remove"}).
To lengthen the mark labels, line 28 changes their expression us-
ing a JavaScript-based expression meaning “if the label value is not
‘California wildfires’ then add ‘Hurricane’ before it with a space.”

In addition to lengthening the mark labels, one can add more
information like the loss cost of each of the specified disasters to
the existing mark labels, as expressed in line 29–37. In line 32, the
items keyword in option indicates subelements of the element
selected by the specifier (i.e., text lines of each mark label). The
add action in line 30 adds the specified items as part of the mark
labels. Line 33–34 sets text style properties; other properties like
text alignment does not need to be specified as the compiler looks
for those properties from other similar elements (i.e., the existing
labels; P3). Lastly, line 35 formats the new text element as “$00
billion” using the expression keyword.

2 AID BUDGET (DESKTOP TO MOBILE)
The Aid Budget example summarizes the COVID-19 aid budget
plans for each business sector suggested by the Democratic (blue)
and Republican (pink) U.S. parties compared to the budgets already
passed by the U.S. Congress (lightgray).The desktop version in Fig-
ure 2 has three columns for the Republican, already passed, and
Democratic plans in this order, and rows for eight business sectors,

https://www.nytimes.com/interactive/2020/07/30/upshot/coronavirus-stimulus-
bill.html

1

https://nyti.ms/38VBIzz
https://www.nytimes.com/interactive/2020/07/30/upshot/coronavirus-stimulus-bill.html
https://www.nytimes.com/interactive/2020/07/30/upshot/coronavirus-stimulus-bill.html

Two Walk-through Cases: Bond Yields and Disaster Cost Kim, et al.

DesktopMobile

...
{ specifier: { role: “view” },
 action: “modify”,
 option: { size: [1024, 612] }},

{ specifier: { role: “title” },
 action: “replace”,
 option: {
 to: { role: “annotation”,
 internal: true },
 separate: false }},

1
2
3
4

5
6
7
8
9
10

{ specifier: { role: “vAxis” },
 action: “add”,
 option: {
 values: [50, 150, 250] }},

{ specifier: {
 role: “axis.label”,
 field: “year” },
 action: “modify”,
 option: { expression: null }},

11
12
13
14

15
16
17
18
19 Added

{ specifier: { role: “mark.label” },
 action: “modify”,
 option: {
 dx: 10,
 orient: “top-right”,
 anchor: “start”,
 align: “left”,
 tick: null,
 expression: “(datum.value!==‘California wildfires’ ?
 ‘Hurricane ’+datum.value : datum.value)” }},

20
21
22
23
24
25
26
27
28

{ specifier: { role: “mark.label” },
 action: “add”,
 option: {
 items: [{
 fontSize: 12,
 fontWeight: 700,
 expression:
 “(‘$’+datum.cost+‘ billion’)” }]}}
...

29
30
31
32
33
34
35

36

TransformedCicero transformations

Figure 1: Awalk-through example case of Disaster Cost (Sec-
tion 1).

composing a tabulated format. Each bar encodes the budget amount
of the corresponding plan and sector categories. To address the
significantly reduced screen width in mobile screens, transforma-
tions for mobile include (1) changing the chart layout to a single-
column grouped bar chart with two row fields (sector → plan),
(2) converting the axis for plan to a legend for the color channel,
(3) reordering the plan row, and (4) miscellaneous changes to text
elements. The Cicero spec is shown in Figure 2.

To fit the mobile screen, the resizing rule in line 2–4 modifies
the size to 375 × 350. This transformation results in an overly nar-
row resolution for the horizontal bars. To address the narrowed
column width, one can partially transpose the column field (plan)

TransformedCicero transformations
1
2
3
4

...
{ specifier: { role: “view” },
 action: “modify”,
 option: { size: [375, 350] }},

{ specifier: { role: “view” },
 action: “replace”,
 option: {
 from: { role: “column”, index: 0 },
 to: { role: “row”, index: 1 }}},

5
6
7
8
9

{ specifier: { role: “row”, field: “plan” },
 action: “modify”,
 option: {
 sort: {
 sortBy: [“Already passed”,
 “Republican plan”,
 “Democratic plan”] }}},

10
11
12
13
14

{ specifier: { role: “axis”, field: “plan” },
 action: “replace”,
 option: {
 to: {
 role: “legend”,
 channel: “color”,
 position: “top”,
 direction: “horizontal”,
 offset: 40, width: 80 }}},

15
16
17
18
19
20
21
22
23

{ specifier: { role: “axis.label”, field: “sector” },
 action: “modify”,
 option: { width: 100 }},

{ specifier: { role: “mark.label”,
 data: { amount: [200, 0] }},
 action: “modify”,
 option: { format: “,d” }},

{ specifier: { role: “mark.label”,
 data: { amount: [1010] }},
 action: “modify”,
 option: { anchor: “start”, dx: 5, width: 60 }}
...

24
25
26

27
28
29
30

31
32
33
34
35

Desktop

Mobile

Figure 2: A walk-through example case of Aid Budget (Sec-
tion 2).

to the row, as indicated in line 5–9. In the option, the from key-
word (line 8) specifies the column at index of 0 (the second column
is the budget value field). The to keyword (line 9) indicates the row
element at index of 1, which does not exist before the transforma-
tion (i.e., after the first row element). Using this index keyword
instead of the field keyword enhances the reusability of this par-
tial transpose rule by making it agnostic to the underlying data
set. This rule is equivalent to using a specifier of {role:"column",
"index": 0} instead of having the from keyword.

By changing the layout as above, one might want to change the
order of bars to emphasize the “already passed” data as a reference
point for both plans (previously shown at the center of the desk-
top view). In the mobile view, one can emphasize those reference

2

Two Walk-through Cases: Bond Yields and Disaster Cost Kim, et al.

points by placing them above the other bars. To enable such a lay-
out transformation, the reordering rule in line 10–14 first specifies
the the row of the plan field (line 10). This specifier reflects the
previous change from the row to the column (P7). Then the sort
keyword and its subproperty sortBy in the option indicate the
new order of the field (line 13–14).

The previous changes cause the vertical axis labels for the plan
field to overlap with each other and repeat for each sector (P2).
At the same time, another encoding channel (color) also encodes
the same field. Using this redundant encoding, one can change the
axis labels to a color legend: the replacement rule in line 15–23
converts the axis for the plan field (the specifier in line 15) to
the legend for the color channel (the option in line 19–20). The
additional keywords (position, direction, offset, and width)
in line 21–23 set additional layout properties.

One can further increase the space for the bars by reducing the
space for the remaining vertical axis labels for the sector field.
One can reduce the space for axis labels by truncating or wrapping.
To maintain the same amount of information, the text wrapping
rule in line 24–26 changes the width of axis labels as 100px. In the
desktop version, the mark labels for the first rows have units ($00
billion). However, the partial transpose earlier (line 5–9) makes
the unit repeat unnecessarily. To address the repeating labels, the
modification rule in line 27–30 selects mark.labels for the amount
value of [200,0] using the data keyword and changes the format
as ",d" (the format expression of d3.js [1]). Lastly, the mark label
for the amount value of 1,010 (“$1,010 billion”) is positioned inside
the mark, the size of which is reduced after the earlier resizing
and re-layout transformations. To reposition the mark label with
text wrapping, the modification rule in line 31–34 queries the la-
bel similarly to the previous rule, and the option defines the layout
properties (anchor, dx, and width).

3 PRINCIPLES FOR OUR CICERO COMPILER
Below, we provide a summary of principles for our Cicero compiler
for reference. Details are described in the paper.

• Associated elements
– (P1)Detect associated elements depending on how a user
has defined the original design.

– (P2) A transformation affecting the layout of a series of
elements, such as adding, removing, or repositioning, has
a downstream effect on the layout of their associated ele-
ments, but not the static style.

• Default behaviours
– (P3) When adding a new element to a series of elements,
its appearance should mimic the existing elements in the
series.

– (P4)Consider the appearance of elements in a similar role
for new elements that are not part of an existing series of
elements.

– (P5) When there are multiple series of existing elements,
select the one with the most similar structure.

– (P6) Use the default options of the rendering grammar’s
compiler for newly added elements.
∗ Place (new) externalized annotations below the chart.

∗ Place (new) internalized data annotations (or mark la-
bels) at the center or the bottom of the associated data
mark.

∗ Place (new) internalized non-data annotations at the
center of the largest contiguous empty space in the chart.

• Conflict management
– (P7) Apply the current rule to a view that has been trans-
formed by the previous rules.

– (P8) When there are two rules making changes to the
same element for the same property, apply the last de-
clared rule.

– (P9) Assign higher priority to a more specific rule than a
more generic rule for the same element.

– (P10)Ruleswith the important property set to true have
higher priorities than others.

REFERENCES
[1] Mike Bostock. 2015. d3-format. https://github.com/d3/d3-format Last accessed

Sept 4, 2021.

3

https://github.com/d3/d3-format

	Abstract
	1 Disaster Cost (Mobile to Desktop)
	2 Aid Budget (Desktop to Mobile)
	3 Principles for our Cicero Compiler
	References

