
Technical Details for Cicero
Hyeok Kim

Northwestern University
Evanston, IL, U.S.A.

hyeok@northwestern.edu

Ryan A. Rossi
Adobe Research

San Jose, CA, U.S.A.
rrossi@adobe.com

Fan Du
Adobe Research

San Jose, CA, U.S.A.
fdu@adobe.com

Eunyee Koh
Adobe Research

San Jose, CA, U.S.A.
eunyee@adobe.com

Shunan Guo
Adobe Research

San Jose, CA, U.S.A.
sguo@adobe.com

Jessica Hullman
Northwestern University

Evanston, IL, U.S.A.
jhullman@northwestern.edu

Jane Hoffswell
Adobe Research
Seattle, WA, U.S.A.
jhoffs@adobe.com

ABSTRACT
This document is a part of Supplementary Material to a CHI 22 pa-
per, ”Cicero: ADeclarative Grammar for Responsive Visualization,”
about technical details. This document first describes an extended
version of Vega-Lite that we used as a rendering grammar for our
Cicero compiler and outlines further technical details about our
Cicero compiler to this extended version of Vega-Lite. Then, this
document describes our prototype recommender for responsive vi-
sualization transformations.

1 AN EXTENDED VERSION OF VEGA-LITE
Currently, Vega-Lite [6] often makes it complicated or difficult to
express common techniques used in many public-facing visualiza-
tions where responsive design is critical, limiting us to observe re-
alistic use cases. We extended Vega-Lite [6] primarily to enhance
the expressiveness for public-facing visualizations that include ad-
ditional text elements and informational marks. For example, the
latest version of Vega-Lite (5.3) is limited in expressing common
strategies for communicative, narrative visualizations in the re-
sponsive context, including text wrapping, externalization of ele-
ments, complex labeling (e.g., mark labels with multiple data val-
ues and varying styles). Furthermore, it is complicated to declare
mobile-specific strategies like label-mark serialization and callout
lines for annotations to data points using Vega-Lite. Thus, our ex-
tended version of Vega-Lite (ExVL) makes it easier to express and
render various techniques for communicative visualizations by pro-
viding simpler expressions. A ExVL specification is converted to
Vega-Lite that handles the primary visualization rendering. ExVL
additionally includes separate rendering modules for annotations,
informationalmarks, and title elements that are not fully supported
by Vega-Lite. The example cases in our gallery in supplementary
material provide various ExVL specifications with descriptions.

An ExVL specification consists of data, transform, layout, layer,
nondata, interaction, and title objects. A data object is an ar-
ray of JSON-formatted data points, and a transform object con-
veys a set of global data transformations (similar to that in Vega-
Lite). A layout object includes information about size (width and
height), composition (single view, smallmultiples, andmap), map
projection details (e.g., translates, scale), axis designs, and row and
column elements. row and column elements are inspired by Tableau’s
shelves design [7]. A user can declare at most two row and column
elements each. The first and second row elements are converted to
row and y encodings in Vega-Lite, respectively. For small multiples,

a user can define a list of filter statements or data values for small
multiples using split keyword.

A layer object is composed of mark, text, tooltip, and transform
objects. A mark object states the mark type of the layer and its vi-
sual properties (e.g., color, size, stroke, etc) which are then con-
verted to encoding channels or static mark properties in Vega-Lite.
A text object contains a list of text elements associated to the cur-
rent layer. A text element can be on one of the mark, axis, and
legend. Visibility options for a text element includes externalized
(with or without numbering), serialized (to the mark), and callout
lines (or ticks). By setting width, a text element can be wrapped.
Furthermore, we added various expressions for complex labeling
(e.g., axis title with summary statistics). The tooltip object con-
tains a list of data fields to include in a tooltip and its positioning
options (at its triggered position or fixed at the bottom of screen).
A layer may have its local data transformations (transform).

A nondata object contains a list of annotation and emphasis el-
ements that are not associated to data objects (marks, axes, and
mark labels). A nondata element can be either text (annotation)
or mark (emphasis). They are manually positioned, and an annota-
tion element can be externalized (with or without numbering). An
interaction object includes definitions of user interactions. The
types of supported user interactions include zoom and pan formap,
context view, and interactive filtering, while tooltip is separately
defined in each layer item).

2 CICERO COMPILER API FOR EXTENDED
VEGA-LITE

Our Cicero compiler API provides an architecture for handling,
compiling, and rendering the source view and Cicero specifica-
tions with a Cicero class and loadCicero function. Developers
for a rendering grammar can attach a Cicero compiler and renderer
(i.e., the compiler of the rendering grammar that actually draws the
visualization) specific to that grammar. A Cicero class instance
contains a source specification in any declarative rendering gram-
mar, a Cicero specification, a transformation compiler that com-
piles the source and Cicero specifications to a target specification,
and the compiler function (or equivalent) for the rendering gram-
mar. Our API also provide the loadCicero function as a wrapper
for creating a Cicero class instance, compiling the specifications,
and rendering the transformed view. While we developed a Ci-
cero compiler for an extended version of Vega-Lite, other render-
ing grammars like the default Vega-Lite [6] or ggplot2 [8] can be
similarly developed. To fit our Compiler API, a Cicero compiler for

1

CHI ’22, Supplementary Material, Kim et al.

a rendering grammar should take source view and Cicero specifi-
cations and return the transformed specification (not the rendered
view), and a renderer should return a rendered view given a visual-
ization specification and a DOM element (or selector) to draw the
visualization in.
The Cicero class is instanced with name (the name of a trans-
formed view or Cicero specification), source (the source view spec-
ification), metadata (a Cicero metadata object), and description
(detailed description for the Cicero specification) as shown in line
3–4 of Figure 1. After instancing, users can add a list of Cicero
rule objects using addTransformationsmethod (line 7–8). Users
can set a Cicero compiler and renderer for the rendering grammar
using a setCompiler method (CiceroToExVL and renderExVL in
line 10, respectively). To get the transformed specification in the
rendering grammar, users can call a getTransformedmethod (line
12). To render the transformed view, users can use a getRendered
method with a CSS selector for the HTML element (or DOM) to
insert the rendered visualization in (line 14).
The loadCicero function makes the above job more pipelined.
The loadCicero function takes a ciceroSpec, source, a Cicero
compiler and renderer for the rendering grammar (line 18–19).Then,
it returns a Promise object 1, and the thenmethod of the returning
Promise takes a callback function with a Cicero class instance as
an argument (line 20–22).

// create a config object
let metadata = { condition: “small” };
// create a Cicero instance
let cicero = new Cicero(“target-view”, source,
 metadata, “This is a Cicero Spec for X”);
// add Cicero transformation rules
let rules = [... Cicero transformations];
cicero.addTransforamtions(rules);
// set compilers for Cicero and rendering (ExVL)
cicero.setCompiler(CiceroToExVL, renderExVL);
// get the transformed specification
let transformed = cicero.getTransformed();
// render the transformed view
cicero.getRendered(“#dom-element”);

// Using loadCicero function
let ciceroSpec = { ... a Cicero specification };
loadCicero(ciceroSpec, source, CiceroToExVL,
 renderExVL) // returns a Promise
 .then(cicero => {
 cicero.getRendered(“#dom-element”);
 });

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Figure 1: A Cicero Compiler API use cases. Line 1–14: in-
stancing a Cicero class object. Line 16–22: pipelining the job
using the loadCicero function.

3 RECOMMENDER PROTOTYPE FOR
RESPONSIVE VISUALIZATION

Below,we describe the pipeline of our prototype recommender and
the strategies that we encoded.

1A type of JavaScript object that better enables asynchronous operation of
functions. See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Promise for details.

Source view Responsive preferences
{ width: 300,
 allowAxesTranspose: true,
 ... }

Ranked
responsive
views (targets)

ASP to Cicero
translator

Cicero to ExVL
compiler

Strategy
sets in ASP

Input:

Post-processing

do(text_wrap,t0).
do(full_axes_transpose).
...

Encoded strategies
Density Message

Preference

Costs

ASP solver

Figure 2: The pipeline of our prototype recommender.

3.1 pipeline
Input: Our prototype recommender (Figure 2A) takes as inputs
the ExVL specification of a source view and user preferences for
responsive designs. User preferences for our recommender include
(1) the intended size of a responsive view, (2) hard constraints for
transformation strategies, and (3) a subset of data that can be omit-
ted or added. Users can specify hard constraints including whether
to allow for transposing axes, changing encoding channels, mod-
ifying mark types, and altering the aspect ratio. For example, if
‘allow for modifying mark type’ is set as false, then recommenda-
tions with changes to mark type are ignored. One can specify a
subset of data to omit or add using a filter statement.
Search Space Generation: Given the source view, users’ prefer-
ences, and transformations strategies, our recommender generates
sets of responsive strategies (strategy sets).The source view design
and preferences are converted to ASP expressions. We encoded a
set of transformation strategies in ASP (see the next section). A
transformation strategy can be applied or not applied when its
condition is satisfied. For example, when the intended chart size
is smaller than that of the source view, then our recommender
may or may not apply a text-wrapping strategy to text element.
We use Clingo [1, 2], a Python library, as our solver over these
rules and constraints, similar to past uses of ASP for visualization
recommenders, namely Draco [5].
Cost Evaluation: For each strategy set, our recommender assigns
three types of costs (density,message, and preference) to the applica-
tion or omission of each transformation strategy. Then, these costs
are normalized to be in the same scale, and then aggregated as a
final cost. First, for changes from bigger screen to smaller screen,
if a strategy reduces the number of elements or spreads them on
screen, it has a density cost of 1, otherwise 0. For instance, a strat-
egy of removing every other axis labels for mobile views has a den-
sity cost of 1 while not applying that strategy has a density cost of

2

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Technical Details for Cicero CHI ’22, Supplementary Material,

0. Similarly, for changes in the opposite direction, if a strategy in-
creases the number of elements or gathers them on screen, it has
a density cost of 1, otherwise 0. In this case, adding an axis label
between each pair of existing labels has a density cost of 1.

Second, Kim et al. [4] propose five forms of changes to implied
messages in visualization under responsive transformations: omit-
ting or adding information and interaction, changes to the amount
of concurrent information within a single scroll height, the discov-
erability of information (i.e., whether it is toggled), and changes
to graphical perception (e.g., aspect ratio changes). We assign mes-
sage cost of 1 for each transformation that cause such changes to
visualization messages. For example, transposing an overly wide
view to a longer visualization has a message cost of 1 because it
reduces the amount of information that are concurrently visible
within a single scroll height.

Third, to reflect preferences in applying responsive transforma-
tion, our prototype includes a preference cost according to their
popularity or frequency in use cases [3, 4]. Given a strategy, if it
is commonly applied (more than 50% of the cases), applying it has
preference cost of 2, otherwise 0. If it is less commonly applied
(more than 10% of the cases), then it has preference cost of 1, oth-
erwise 1, which makes it more random. If it is rarely used (less
than 10% of the cases), then it has preference cost of 0, otherwise
2. For instance, disproportionate rescaling is highly common, so it
has preference cost of 2, while it has message cost of 1 (as it causes
changes to graphical perception). Users may change this prefer-
ences cost based on their own preferences like style guidelines of
an organization. To prevent too many transformations, we assign
a preference cost of 20 − count(𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠).
Post-processing: The ASP to Cicero translator converts each of
the stable strategy sets generated by ASP solver into a Cicero spec-
ification. Then, our Cicero compiler for ExV produces ExVL speci-
fications for target views.

3.2 Encoded strategies
We encode a diverse set of automatable strategies that we observed
in our case studies with 13 realistic use cases and prior design
pattern analyses [3, 4]. Strategies denoted by M are for desktop-
to-mobile transformations, and those denoted by D are for mobile-
to-desktop transformations. The non-prefixed strategies can be ap-
plied to both directions of transformation.

• Changes to layout
– Transposing axes
– Partial axes transpose (see the Aid Budget case in the pa-
per)

– Resizing the chart (proportionately or disproportionately)
• Changes to data
– M-Omitting a specified subset of data
– D-Filtering in a specified subset of data

• Changes to mark properties and encoding channels
– Rescaling the size channel.
– M-Removing detail encodings like image, color, and size
– M-Changing the mark type (from bar, line, scatterplot to
heatmap)

– M-Changing small multiples to a heatmap
• Changes to text elements

– M-Externalizing non-data/data annotations
– M-Numbering externalized data annotations
– D-Internalizing non-data/data annotations
– M-Wrapping text elements

• Changes to references
– Repositioning legends
– M-Serializing axis labels
– D-Parallelizing axis labels
– M-Converting axis labels to legends
– M-Removing every other axis labels
– D-Adding every other axis labels
– Adding ticks for mark labels

• Changes to interaction
– M-Fixing the tooltip position
– D-Unfixing the tooltip position
– M-Removing tooltip
– D-Adding tooltip
– Removing a context view
– Adding a context view (for time-serial visualizations)
– Removing zoom
– Adding zoom (for map visualizations)

REFERENCES
[1] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. 2014.

Clingo = ASP + Control: Preliminary Report. (2014). arXiv:1405.3694 https:
//arxiv.org/abs/1405.3694.

[2] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten
Schaub, and Marius Schneider. 2011. Potassco: The Potsdam Answer Set Solving
Collection. AI Commun. (2011), 18 pages. https://doi.org/10.3233/AIC-2011-0491

[3] Jane Hoffswell, Wilmot Li, and Zhicheng Liu. 2020. Techniques for Flexible Re-
sponsive Visualization Design. In ACM Human Factors in Computing Systems
(CHI). https://doi.org/10.1145/3313831.3376777

[4] Hyeok Kim, Dominik Mortiz, and Jessica Hullman. 2021. Design Patterns
and Trade-Offs in Authoring Communication-Oriented Responsive Visualiza-
tion. Computer Graphics Forum (Proc. EuroVis) 40 (2021), 00–00. Issue 3. https:
//doi.org/10.1111/cgf.14321

[5] Dominik Moritz, ChenglongWang, Gregory Nelson, Halden Lin, AdamM. Smith,
Bill Howe, and Jeffrey Heer. 2019. Formalizing Visualization Design Knowledge
as Constraints: Actionable and Extensible Models in Draco. IEEE Trans. Visualiza-
tion & Comp. Graphics (Proc. InfoVis) (2019). https://doi.org/10.1109/TVCG.2018.
2865240

[6] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Trans. Visualiza-
tion & Comp. Graphics (Proc. InfoVis) (2017). https://doi.org/10.1109/TVCG.2016.
2599030

[7] Tableau Software. 2003. Tableu. https://www.tableau.com/ Last accessed Aug
15, 2021.

[8] Hadley Wickham. 2010. A Layered Grammar of Graphics. Journal of Computa-
tional and Graphical Statistics 19, 1 (2010), 3–28. https://doi.org/10.1198/jcgs.2009.
07098

3

https://arxiv.org/abs/1405.3694
https://arxiv.org/abs/1405.3694
https://arxiv.org/abs/1405.3694
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.1145/3313831.3376777
https://doi.org/10.1111/cgf.14321
https://doi.org/10.1111/cgf.14321
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://www.tableau.com/
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1198/jcgs.2009.07098

	Abstract
	1 An Extended Version of Vega-Lite
	2 Cicero Compiler API for Extended Vega-Lite
	3 Recommender Prototype for Responsive Visualization
	3.1 pipeline
	3.2 Encoded strategies

	References

